ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ СТРОИТЕЛЬНЫЕ Нейтронный метод измерения влажности

Building materials. Neutron method of humidity measurement

ОКП 57 0000; 58 0900

Дата введения 1988-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР

ИСПОЛНИТЕЛИ

О.М.Нечаев, канд. техн. наук (руководитель темы); Ю.Н.Мизрохи, канд. техн. наук; З.М.Брейтман; Л.Г.Родэ, канд. техн. наук; В.В.Судаков, канд. техн. наук; Н.Л.Рынин, канд. техн. наук; В.Г.Копытов; В.Г.Романов, канд. техн. наук; В.В.Пушкарев; В.П.Иванов, канд. физ.-мат. наук; М.К.Трунцева; И.Н.Нагорняк

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 5 августа 1987 г. № 165
 - 3. ВЗАМЕН ГОСТ 23422-79 в части нейтронного метода измерения влажности
 - 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 8269-87	Приложение 1, п.2, п.3
ГОСТ 8735-75	Приложение 1, п.2, п.3
ГОСТ 12730.1-78	Вводная часть
ГОСТ 21196-75	1.1
ГОСТ 25932-83	1.1

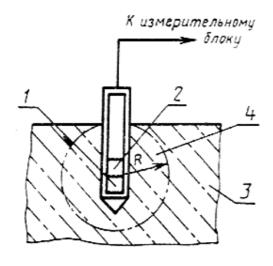
Настоящий стандарт распространяется на песок, щебень, гравий и гравийно-песчаную смесь, применяемые в качестве заполнителей бетона (далее - сыпучие материалы), бетонную и растворную смеси, а также бетоны на плотных заполнителях (далее - бетоны) и устанавливает методики измерения объемной или массовой влажности (далее - влажности) нейтронным метолом

Нейтронный метод применяют преимущественно для автоматизированного измерения влажности сыпучих материалов, а также для экспрессного измерения влажности бетонных и растворных смесей и бетонов.

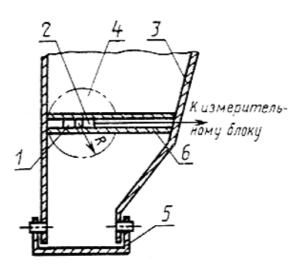
Нейтронный метод измерения влажности основан на эффекте замедления быстрых нейтронов в процессе их взаимодействия с ядрами атомов водорода воды, содержащейся в материале.

Число медленных нейтронов, регистрируемых влагомерами, характеризует объемную

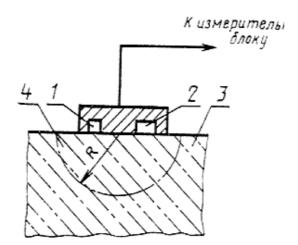
влажность контролируемого материала. Массовую влажность контролируемого материала находят по отношению значения объемной влажности этого материала к его средней плотности, определенной по ГОСТ 12730.1-78.

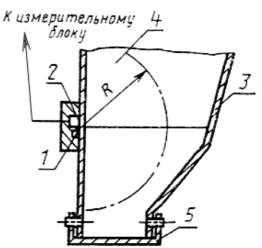

1. Средства измерений

- 1.1. Измерение влажности сыпучих материалов и бетонов следует проводить при помощи влагомеров по ГОСТ 21196-75 или влагомеров-плотномеров по ГОСТ 25932-83, отградуированных заводом-изготовителем в значениях объемной или массовой влажности.
- 1.2. Средства измерений должны обеспечивать измерение объемной влажности в диапазоне 1-30% с погрешностью не более 1 абс. %, или массовой влажности в диапазоне 1-12% с погрешностью не более 0,75 абс. % при доверительной вероятности 0,86.
- 1.3. Допускается применять для измерения влажности сыпучих материалов другие средства измерений, соответствующие требованиям настоящего стандарта (п.1.2) и отградуированные по методике, приведенной в приложении 1.
- 1.4. При проведении измерений должны соблюдаться действующие санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений, утвержденные Минздравом СССР.
- 1.5. Влажность сыпучих материалов, бетонных и растворных смесей измеряют преимущественно влагомерами с измерительными преобразователями зондового типа в соответствии с черт.1, 2.


Для измерения влажности при одностороннем доступе к контролируемому материалу применяют влагомеры с измерительными преобразователями поверхностного типа в соответствии с черт.3, 4.

2. Подготовка и проведение измерений


- 2.1. При измерении влажности сыпучих материалов, бетонных и растворных смесей в бункерах измерительный преобразователь зондового типа помещают в обсадную трубу, установленную внутри бункера в соответствии с черт.2, а измерительный преобразователь поверхностного типа устанавливают на вертикальной стене в соответствии с черт.4.
- 2.2. Число и расположение участков, на которых должна определяться влажность бетонов в конструкциях, устанавливают нормативно-технической документацией или рабочими чертежами на конструкцию. При отсутствии указанных данных число и расположение участков контроля влажности устанавливается предприятием-изготовителем конструкции по согласованию с проектной или научно-исследовательской организацией.
- 2.3. При установке измерительных преобразователей должны быть выполнены следующие условия:
- 1) преобразователи зондового типа следует устанавливать так, чтобы зона рассеяния нейтронов, соответствующая сфере радиусом R, находилась внутри контролируемого материала согласно черт.1, 2.
- 2) преобразователи поверхностного типа следует устанавливать так, чтобы зона рассеяния нейтронов, соответствующая полусфере радиусом R, описанная вокруг геометрического центра детектора медленных нейтронов, находилась внутри контролируемого материала согласно черт.3, 4.


1 - источник излучения; 2 - детектор; 3 - контролируемый материал; 4 - сфера зоны рассеяния нейтронов Черт.1

1 - источник излучения; 2 - детектор; 3 - расходный бункер; 4 - сфера зоны рассеяния нейтронов; 5 - шибер; 6 - обсадная труба Черт.2

1 - источник излучения; 2 - детектор; 3 - контролируемый материал; 4 - полусфера зоны рассеяния нейтронов Черт.3

1 - источник излучения; 2 - детектор; 3 - расходный бункер; 4 - полусфера зоны рассеяния нейтронов; 5 - шибер Черт.4

2.4. Радиусы R выбирают в зависимости от значения минимальной влажности W_{\min} , соответствующей началу диапазона измерения, согласно табл.1.

Таблица 1

W_{\min} , %	1,0-2,0	3,0	5,0 и более
$oldsymbol{R}$, mm	500	400	250

Наименьшее расстояние от поверхности сыпучих материалов или бетонной или растворной смеси в бункере до измерительного преобразователя должно быть не менее R при соответствующей влажности.

3. Обработка результатов

- 3.1. Значение влажности определяют по показаниям влагомера и (или) градуировочной зависимости, представленной в виде графика, таблицы или формулы с округлением до 0,1 абс. %. Пример градуировочной зависимости, представленной в виде графика, приведен на черт.5 (приложение 1).
 - 3.2. Значение массовой влажности W_m , %, вычисляют по формуле

$$W_m = \rho_{\rm H_2O} \frac{W_{\rm o}}{\rho} \,, \tag{1}$$

где

 W_0 — объемная влажность, %;

 $ho_{\rm H_2O}$ — плотность воды, равная 1000 кг/м³;

 ρ — средняя плотность контролируемого материала,. кг/м³

- 3.3. Вычисление массовой влажности W_m проводят с округлением до 0,1 абс. %.
- 3.4. Результаты измерений заносят в журнал, форма которого приведена в приложении 2.

ПРИЛОЖЕНИЕ 1 Рекомендуемое

Методика градуировки нейтронных влагомеров

- 1. Градуировку влагомеров производят по образцам. За образцы принимают увлажненные сыпучие материалы, помещенные в металлические емкости, размер которых должен быть не менее:
 - 1) для измерительных преобразователей зондового типа 800х800х900 мм;
 - 2) для измерительных преобразователей поверхностного типа 800х800х500 мм.
- 2. Одновременно с заполнением емкостей для образцов отбирают 3-4 пробы увлажненных сыпучих материалов для определения массовой влажности W_m , %, по ГОСТ 8735-75 или ГОСТ 8269-87.
- 3. Для градуировки влагомеров с преобразователями зондового типа в центре емкости должна быть расположена обсадная труба для установки измерительного преобразователя.

Для градуировки влагомеров с преобразователями поверхностного типа на верхнюю поверхность образца укладывают стальной лист толщиной 5-10 мм, имитирующий стенку бункера, на которую устанавливают измерительные преобразователи.

4. Для градуировки влагомеров изготавливают пять образцов из сыпучих материалов с использованием мелкого заполнителя.

Влажность образцов W_m определяется по ГОСТ 8735-75 или ГОСТ 8269-87 и должна составлять:

1-го образца - 7-7,5%; 2-го образца - 5,8-6%; 3-го образца - 4-4,5%; 4-го образца - 3-3,5%.

- 5. Массу образца сыпучих материалов, использованных для заполнения емкости, определяют путем взвешивания.
- 6. Плотность сыпучих материалов ρ , $\kappa \Gamma / M^3$, использованных для образцов, вычисляют по формуле

$$\rho = \frac{m}{V},\tag{2}$$

где

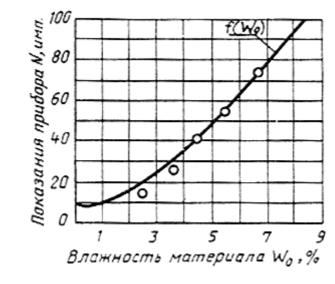
V - объем образца, м³

7. Объемную влажность образца $W_{\rm o}$, %, определяют по формуле

$$W_{\rm o} = \frac{\rho}{\rho_{\rm H_2O}} \cdot \frac{W_m}{100 + W_m} \cdot 100, \qquad (3)$$

где ρ — плотность сыпучего материала, кг/м³;

 $ho_{
m H_2O}$ — плотность воды, равная 1000; кг/м 3


 W_{m} - по п.4 настоящего приложения.

8. Измерительный преобразователь устанавливают на образце в соответствии с п.3 настоящего приложения, снимают показания влагомера не менее пяти раз и определяют среднее арифметическое значение результатов измерений \overline{N} . Пример записи результатов измерений приведен в табл.2.

Таблица 2

Номер образца	Результаты измерений влажности (по массе) W_m , %	Насыпная плотность сыпучего материала ρ , кг/м ³	Объемная влажность образца W_{0} , %	Показания влагомера $N_{, ext{ИМП}}$	Примечания
1 Результаты измерения	$ \begin{array}{c} 6,7 \\ 6,3 \\ 6,5 \\ 6,5 \\ 6,5 \\ \hline \overline{W_m} = 6,5 \end{array} $	1420	8,07	$ \begin{array}{r} 18358 \\ 18490 \\ 18435 \\ 18377 \\ 18510 \\ \hline \overline{N} = 18430 \end{array} $	

9. По результатам проведенных измерений устанавливают градуировочную зависимость $\overline{N} = f(W_o)$. Пример построения градуировочной зависимости приведен на черт.5.

Черт.5

10. Среднее квадратическое отклонение экспериментальных точек от градуировочной зависимости определяют по формуле

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (W_{0i}^{r} - W_{0i})^{2}}{n-2}},$$
(4)

где

 W_{0i}^{r} - значение объемной влажности сыпучего материала, определенное по градуировочной зависимости и показаниям влагомера на i -м образце;

 W_{0i} значение объемной влажности i -го образца, определенное в соответствии с п.7:

n — число образцов для установления градуировочной зависимости.

11. Погрешность градуировки не должна превышать 0,5 абс. % при доверительной вероятности не менее 0,86.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

Форма журнала для записи результатов измерений влажности

Влагомер типа	,	порядковый	номер	ПО	системе
нумерации предприятия-изготовителя		_			

Дата	Материал	Фракционный состав	Показания прибора	Влажность, %	Примечание

Оператор		
	подпись	